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The chronology and environmental context of the first hominin dispersal in Europe
have been subject to debate and controversy. The oldest settlements in Eurasia (e.g.,
Dmanisi, ∼1.8 Ma) suggest a scenario in which the Caucasus and southern Asia
were occupied ∼0.4 Ma before the first peopling of Europe. Barranco León (BL) and
Fuente Nueva 3 (FN3), two Early Pleistocene archeological localities dated to ∼1.4 Ma
in Orce (Guadix-Baza Depression, SE Spain), provide the oldest evidence of hominin
presence in Western Europe. At these sites, huge assemblages of large mammals
with evidence of butchery and marrow processing have been unearthed associated
to abundant Oldowan tools and a deciduous tooth of Homo sp. in the case of BL.
Here, we: (i) review the Early Pleistocene archeological sites of Europe; (ii) discuss
on the subsistence strategies of these hominins, including new estimates of resource
abundance for the populations of Atapuerca and Orce; (iii) use cartographic data of the
sedimentary deposits for reconstructing the landscape habitable in Guadix-Baza; and
(iv) calculate the size of the hominin population using an estimate of population density
based on resource abundance. Our results indicate that Guadix-Baza could be home
for a small hominin population of 350–280 individuals. This basin is surrounded by the
highest mountainous reliefs of the Alpine-Betic orogen and shows a limited number of
connecting corridors with the surrounding areas, which could have limited gene flow
with other hominin populations. Isolation would eventually lead to bottlenecks, genetic
drift and inbreeding depression, conditions documented in the wild dog population of
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the basin, which probably compromised the viability of the hominin population in the
medium to long term. This explains the discontinuous nature of the archeological record
in Guadix-Baza, a situation that can also be extrapolated to the scarcity of hominin
settlements for these ancient chronologies in Europe.

Keywords: early Homo, Western Europe, subsistence strategies, Barranco León, Fuente Nueva 3, population size

INTRODUCTION

The chronology of the first hominin settlements in Europe
has been subject to debate and controversy. Until the mid
1990s most paleoanthropologists believed that there was
no significant habitation before 0.6–0.5 Ma (e.g., Aragó,
Bilzingsleben, Boxgrove, Ceprano, Mauer, and Verteszöllos),
with most sites concentrating on <0.45 Ma (e.g., Atapuerca’s
Sima de los Huesos, Petralona, Schöningen, Swanscombe,
and Steinheim) (Carbonell and Rodríguez, 1994; Roebroeks
and van Kolfschoten, 1994), an increase in the number of
occupations that coincided with interglacial MIS 11 (Blain
et al., 2021). This “young chronology” was shortly challenged
by new findings in Europe (Carbonell et al., 1995; Ascenzi
et al., 1996; Bermúdez de Castro et al., 1997; Martínez-Navarro
et al., 1997), the Caucasus (Gabunia and Vekua, 1995) and
China (Wanpo et al., 1995; Larick and Ciochon, 1996), as well
as by the geochronological re-evaluation of the evidence from
Java (Swisher et al., 1994; Larick et al., 2001; Hyodo et al.,
2011), which all indicated an earlier hominin arrival in Eurasia,
during late Early Pleistocene times (Arribas and Palmqvist,
1999). However, although the archeological record in Europe has
improved over the last decades, it remains highly fragmentary for
these ancient chronologies and many sites lack high-resolution
chronostratigraphic frameworks, which raises doubts on the age
of the earliest hominin settlements. For example, a re-evaluation
of the magnetostratigraphic and radiometric age constraints on
several key sites bearing hominin remains and/or lithic tools from
southern Europe led Muttoni et al. (2010, 2013) to propose that
the first hominin dispersal in Western Europe took place during
the Matuyama reverse polarity chron, between the Jaramillo
normal polarity subchron and the Brunhes-Matuyama boundary.

Ancient evidence of hominin presence in Western Europe,
The Caucasus, the Levantine Corridor, and Northern Africa
is now well documented in a number of Early Pleistocene
archeological localities (see Figure 1 and references therein).
This provides a chronological scenario for the oldest hominin
settlements in Eurasia in which the Caucasus (Dmanisi,∼1.8 Ma)
and southern Asia were occupied ∼400 ka before the first
peopling of Europe (Arribas and Palmqvist, 1999; Dennell
and Roebroeks, 2006; Mosquera et al., 2013). It has been
proposed that this delay could result from competition with
other carnivores: hominin survival at the middle latitudes, where
plant resources are scarce during the cold season, would depend
on the regular scavenging of ungulate carcasses (Turner, 1992;
Palmqvist et al., 2022a). For this reason, Rodríguez-Gómez
et al. (2017a) estimated the level of competition for meat
among the members of the carnivore guild of Venta Micena
(VM), a site dated by biochronology and paleomagnetism to

1.6–1.5 Ma with no conclusive evidence on hominin presence
(Arribas and Palmqvist, 2002; Martínez-Navarro, 2002; Palmqvist
et al., 2005). This study provided estimates on meat availability
and competition intensity for VM that were higher and lower,
respectively, than those obtained for Barranco León (BL) and
Fuente Nueva 3 (FN3) (Rodríguez-Gómez et al., 2016a). Given
that BL and FN3 are 200–100 ka younger than VM, this
suggests that the delay in the colonization of Europe was not a
matter of ecological opportunity and other factors (e.g., climatic
and/or geographic barriers to dispersal) should be considered
(Rodríguez-Gómez et al., 2017a).

The Early Pleistocene Archeological
Sites of the Guadix-Baza Depression
Barranco León and FN3 lie in the NE sector of the Baza Basin
(Guadix-Baza Depression, SE Spain; Figure 2A), in the vicinity
of the town of Orce (Figure 2B). This sedimentary depression
is an inland basin that covers an area of ∼4,000 km2 and is
surrounded by mountainous reliefs of the Betic Chains, with
heights of up to 3,479 m in the Mulhacén peak. The continental
Plio-Pleistocene record of the basin is composed of lacustrine and
fluvial deposits that show a complex sedimentary architecture
(both laterally and vertically) as a result from active tectonics and
orbitally induced climatic cycles (García-Aguilar and Palmqvist,
2011). The sediments include limestones, marls, shales, sands,
and conglomerates, as well as dark clays and silexites associated
to the archeopaleontological sites (García-Aguilar et al., 2014,
2015). The basin was in connection with the Mediterranean
Sea during Late Miocene times by the ‘Almanzora Corridor’
and became continental at the end of the Tortonian (Guerra-
Merchán, 1990, 1993; Soria et al., 1999; but see also Husing
et al. (2010)). Since these times, it was subject to isostatic
uplift with an average uplift rate of ∼200 m/Ma, as estimated
from Late Neogene coastal marine conglomerates and coral
reefs (Braga et al., 2003). As a result, the glacis surface (i.e.,
the uppermost horizontal infilling level) stands now 1,000 m
on average above sea level. During the Plio-Pleistocene, the
basin developed a network of endorheic drainage, being subject
to: (i) intense tectonic subsidence relative to the surrounding
mountains, which facilitated the accumulation of a thick (∼550
m) and relatively continuous sedimentary record; and (ii)
hydrothermal activity (Figures 2A,B), which provided a mild
and productive environment for the terrestrial fauna (García-
Aguilar et al., 2014, 2015). The thermal springs were a major
determinant in the establishment of biodiversity ‘hot spots’ for
the large mammal fauna, which remains were preserved in many
sites like BL and FN3 (Palmqvist et al., 1996, 2005, 2022b;
Arribas and Palmqvist, 1998; Viseras et al., 2006; Arribas et al.,
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2009; Maldonado-Garrido et al., 2017; Ros-Montoya et al., 2017;
Martínez-Navarro et al., 2018).

The stratigraphy of BL (Figure 2C) spans the middle
terrigenous and upper silty calcareous members of the Baza
Formation (Vera et al., 1984). The middle member consists
of alluvial red clays, sandstones and conglomerates while the
upper one is dominated by limestones, sandstones, carbonate
silts, and dark mudstones (Turq et al., 1996; Arribas and
Palmqvist, 2002) deposited in a shallow lacustrine system with
an alternation of oligo- to mesohaline waters (Anadón et al.,
1994; Anadón and Gabàs, 2009). The excavated layers show
sediments associated with a swampy environment, except level
D (formerly BL5; Arribas and Palmqvist, 2002), which shows
fluvial features and encases most of the archeological assemblage
(Toro-Moyano et al., 2013). The sub-horizontal stratigraphy
of FN3 (Figure 2C) shows two sedimentary cycles deposited
in a lutitic-carbonate, lacustrine-to-swampy environment, each
with limestones at the top of the sequence separated by
clays, fine sands and marly lutites, which cluster in two main
units, the Lower and Upper Archeological Levels (Turq et al.,
1996; Martínez-Navarro et al., 1997; Espigares et al., 2013,
2019).

The age of BL-D (Figures 2C,E) and FN3 (Figures 2C,D) was
estimated in 1.43 ± 0.38 and 1.19 ± 0.21 Ma, respectively, using
biochronology, magnetostratigraphy and the U-series/electron
spin resonance (ESR) dating method applied to optically bleached
quartz grains and fossil teeth (Duval et al., 2012; Toro-Moyano
et al., 2013). An age of 1.50± 0.31 Ma was derived for FN3 based
on cosmogenic nuclides (Álvarez et al., 2015). Other age estimates
were derived from a biometric approach that considered an
orthogenetic, rectilinear pattern of size increase in the lower
molar teeth of the arvicolid Mimomys savini (Lozano-Fernández
et al., 2013, 2014), but this “vole-clock” was questioned (Martin,
2014; Palmqvist et al., 2014, 2016). The absence of suids from
BL and FN3 provides also a useful biochronological inference
(Martínez-Navarro et al., 2015): suids are absent from Europe
between 1.8 and 1.2 Ma, until the arrival of an evolved form
of Sus strozzi during the Epivillafranchian (Cherin et al., 2018,
2020). This species is first recorded in level TE9 (Atapuerca),
dated at 1.22 ± 0.16 Ma by cosmogenic nuclides (Carbonell
et al., 2008), and later in other sites of Jaramillo age like
Untermassfeld, Vallonnet, or Vallparadís (Moullé et al., 2006;
Madurell-Malapeira et al., 2010, 2014; Cherin et al., 2018, 2020).

Excavations through the last three decades in BL and FN3 have
unearthed huge Oldowan assemblages composed of cores, flakes
and debris that represent the whole reduction sequence (Tixier
et al., 1995; Turq et al., 1996; Martínez-Navarro et al., 1997; Oms
et al., 2000; Palmqvist et al., 2005; Barsky et al., 2010, 2016; Toro-
Moyano et al., 2011, 2013; Espigares et al., 2013; Titton et al.,
2018, 2021; Yravedra et al., 2021). The tools are associated to
skeletal remains of vertebrates, mostly large mammals (>6,500
specimens in BL and >9,000 in FN3). Espigares et al. (2019)
showed that of those bones with their cortical surface well
preserved (4,249 in BL and 3,852 in FN3), 64 (0.8%) exhibited
cut marks and 163 (2%) showed percussion marks resulting from
bone fracturing by the hominins for accessing their marrow
contents. Similarly, a recent study of 2,857 bone remains from

FN3 unearthed during the excavation seasons of the years 2017–
2020 has shown that 25 (0.9%) bear cut marks and 16 (0.6%),
percussion marks (Yravedra et al., 2021). These frequencies are
close to those recorded at Pirro Nord, where 1.1% of the remains
are cut-marked and 0.6% show evidence of intentional bone
breakage (Cheheb et al., 2019).

The anthropogenic marks of BL and FN3 provides clues on
the subsistence strategies of the hominins that first dispersed
in Europe (Espigares et al., 2013, 2019; Toro-Moyano et al.,
2013; Yravedra et al., 2021). Cut marks are relatively short
(length range: 1.8–13.0 mm) and are mostly represented by
incisions, although scrapes, sawing marks, and chop marks
are also documented. They mostly appear on remains of
animals of medium-to-large and very large size, and evidence
patterns of skinning, defleshing, disarticulation, evisceration, and
periosteum removal. Percussion marks include pits, notches,
impact flakes, and negative flake scars generated by hammerstone
impact during the butchery of bones for marrow processing.
There are also tooth-marked bones, most of them gnawed by the
giant, short-faced hyena Pachycrocuta brevirostris, and some by
porcupines (Espigares et al., 2019). This is particularly evident in
the case of the Upper Archeological level of FN3, in which hyena
coprolites are abundantly preserved (Espigares et al., 2013).

During the last years, a wealth of information on the
taphonomy of the Orce sites, the technological features of their
tool assemblages and the paleoecology of the faunal community
has been published. This makes necessary a review of the
paleoenvironments inhabited by the large mammals and the
hominins in Guadix-Baza during late Early Pleistocene times,
as a way of elucidating the ecological context in which the first
hominin arrival in Western Europe took place. In this article, our
three main goals are: (i) to review the subsistence strategies of the
hominins in the archeological sites of BL and FN3; (ii) to evaluate
the roles played by the hominins and carnivores in generating the
fossil assemblages preserved at both sites; and (iii) to estimate the
size of the hominin population that inhabited the basin.

MATERIALS AND METHODS

Our review of the evidence on hominin subsistence strategies
includes: (i) the inferences on the mammalian fauna (Table 1)
and the paleoenvironments of the basin; (ii) the technological
features of the tool assemblages and the anthropogenic marks on
the bones of large mammals; (iii) the scavenging opportunities
provided by sabertooths to the hominins; and (iv) the inferences
on the level of competition among the members of the carnivore
guild and their consequences on hominin population density.

We use new data for evaluating the roles of hominins and
carnivores as bone collecting and modifying agents in the
assemblages of BL and FN3. Specifically, we study the abundance
of proximal and distal epiphyses of major limb bones of ungulates
and their relationship with the mineral density and marrow yields
of these bone portions. For doing so, we use modern analogs
(Outram and Rowley-Conwy, 1988; Brink, 1997; Lam et al., 1999)
and least-squares regression techniques using SPSS Statistics v.
25. Then, we compare the results obtained with those for VM,
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a site conclusively identified as generated in the surroundings of
a denning site of the large bone-destroying hyena P. brevirostris
(Palmqvist et al., 1996, 2011, 2022b; Arribas and Palmqvist, 1998;
Palmqvist and Arribas, 2001). Thirdly, we analyze with SPSS
Statistics v. 25 the relationship between prey biomass availability
and rainfall in a set of African Natural Parks and Game Reserves
using data from Hatton et al. (2015) and Fick and Hijmans
(2017). Then, we compare these results with the estimates
available for BL and FN3 (Rodríguez-Gómez et al., 2016a, 2017a;

Martín-González et al., 2019), to evaluate meat availability in the
Orce sites. Finally, we develop a new model of the paleogeography
of the Guadix-Baza Depression during the late Early Pleistocene
using compiled data on the cartography on the sediments
(García-Aguilar et al., 2014). This allows us to estimate with
ImageJ v. 1.51 the extent of the paleoenvironments, which
provides a reconstruction of the surface area habitable by the
large mammals and the hominins. The cartographic surface,
which encompasses the area covered by the lake, the outcrop

FIGURE 1 | (A) Geographic location of selected Early Pleistocene to early Middle Pleistocene archeological sites of Europe, North Africa, the Levantine Corridor, and
the Caucasus. 1: Barranco León (BL) and Fuente Nueva 3 (FN3), two sites of the Guadix-Baza Depression, Spain (1.5–1.2 Ma; Martínez-Navarro et al., 1997; Oms
et al., 2000; Espigares et al., 2013, 2019; Toro-Moyano et al., 2013; Titton et al., 2021; Yravedra et al., 2021), which have yielded abundant Oldowan assemblages
(∼3,500 artifacts) and evidence of butchery and marrow processing of large mammal bones, as well as a human deciduous tooth in BL. 2: level TE9 of Sima del
Elefante (1.3–1.1 Ma; Carbonell et al., 2008) and level TD6 of Trinchera Dolina (∼0.85 Ma, MIS 21; Duval et al., 2018; Parés et al., 2018) in Atapuerca, Spain (a
mandibular symphysis and 32 Oldowan artifacts, including four flakes, used for defleshing and marrow extraction have been unearthed in TE9). 3: Alto de las
Picarazas, Spain (1.5–1.4 Ma; Vicente-Gabarda et al., 2016), which preserves >2,000 bone remains (several of them with butchery, percussion, and fracture marks)
and seven lithic tools (two shapeless flint fragments and some splinters found during the sieving of sediments). 4: Vallparadís, Level EVT7, Spain (0.98–0.95 Ma, MIS
27; Martínez et al., 2015; but see, for a younger chronology of ∼0.85 Ma, Duval et al., 2015), which has yielded small-sized Oldowan tools (notches, becs, scrapers
and denticulates on small pebbles, clasts, fragments, and flakes, as well as a large single chopper) elaborated from local raw materials and based on an anvil
knapping technique (Garcia et al., 2013). 5: Bois-de-Riquet, Lézignan-la-Cèbe (1.3–1.1 Ma; Bourguignon et al., 2016; but see, for an older chronology, Crochet
et al., 2009), which preserves lithic artifacts (177 basalt tools, although anthropically produced artifacts are difficult to differentiate from fragments or blocks detached
naturally from the exfoliating surfaces enclosing the sedimentary level). 6: Pont-de-Lavaud (1.1–1.0 Ma; Voinchet et al., 2010), with an Oldowan assemblage that
comprises ∼8,000 artifacts made exclusively on quartz pebbles and subangular vein quartz fragments, including ∼4,000 broken pebbles and 1,321 pieces with
percussion marks and evidence of flaking with the bipolar-on-anvil technique (De Lombera-Hermida et al., 2016). 7: Vallonnet Cave (1.2–1.1 Ma; Michel et al., 2017;
Cauche, 2022), with percussion tools, shaped pebbles, flakes, cores, and cut-marked bones. 8: Monte Poggiolo, Italy (∼0.85 Ma, within the reverse magnetic
polarity subchron C1r.1r; Muttoni et al., 2011), which preserves an industry characterized by knapped pebbles and the products derived from their knapping,
showing an almost total absence of retouched tools and the presence of some scrapers and denticulates that seem to be incidental and have no distinctive features
(Peretto, 2006). 9: Isernia La Pineta, Italy (∼0.6 Ma; Coltorti et al., 2005), with flint and cherty limestone artifacts associated with remains of large mammals,
characterized by the use of anvils in an opportunistic and rapid way to produce a large number of flakes and residual cores, usually of very small size. 10: Pirro Nord,
Italy (1.6–1.3 Ma; Arzarello et al., 2007, 2015; Cheheb et al., 2019), where 5 out of 340 lithic artifacts preserve use-wear traces and are associated with more than
one thousand vertebrate fossil remains, several with cut marks or evidence of intentional breakage. 11: Venosa Notarchirico, Italy (0.695–0.670 Ma, MIS 17; Moncel
et al., 2020), which Oldowan industry is made on chert and includes flakes (mostly unretouched), broken flakes, debris, retouched nodules, cores, and limestone
pebbles, as well as two bifacial tools and a handaxe. 12: Happisburgh 3 and Pakefield, United Kingdom (∼0.8 Ma; Lewis et al., 2019), which tool assemblages
comprise flint flakes, flake tools, cores, and a handaxe in the case of Happisburgh 1 (∼0.5 Ma, MIS 13). 13: Kozarnika Cave, Layers 13a-c, Bulgaria (∼0.75 Ma;
Muttoni et al., 2017), which has provided an abundant industry (∼10,000 artifacts, associated to a rich faunal assemblage) that shows a predominance of fragments
from primary flaking (the local flint is very fragile), with the flakes obtained by simple unipolar to bipolar debitage (Sirakov et al., 2010). 14: Denizli, Turquey
(1.2–1.1 Ma; Lebatard et al., 2014), which has provided the Kocabaş skull fragment, the only known Turkish fossil of Homo erectus. 15: Dursunlu, Turquey
(0.99–0.78 Ma; Güleç et al., 2009), where remains of rhino, hippo and horse are found with 135 modified quartz implements. 16: Dmanisi, Georgia (∼1.8 Ma; García
et al., 2010; Coil et al., 2020), a site that preserves the oldest evidence of human presence out of Africa (see text), with five hominin skulls and several postcranial
bones (Gabunia and Vekua, 1995; Lordkipanidze et al., 2005, 2013), a rich assemblage of Late Villafranchian mammals and large numbers of Oldowan artifacts
made of basalt, andesite and tuffs; the tool assemblage includes cores (mostly unifacial), flakes and debris, which shows that all stages of flaking activity took place

(Continued)
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FIGURE 1 | at the site (Mgeladze et al., 2011). 17: Akhalkalaki, Georgia (1.0–0.9 Ma; Vekua, 1986), with thousands of remains of large mammals, including the giant
hippo H. antiquus (not present in Dmanisi), and artifacts associated to the fauna, which could be not contemporaneous with it (Tappen et al., 2002). 18: Gesher
Benot Ya’aqov, Israel (∼0.78 Ma, MIS 19; Goren-Inbar et al., 2000), with an Acheulian assemblage composed of bifaces predominantly formed on basalt and core
tools mostly made of flint. 19: ’Ubeidiya, Israel (∼1.4 Ma; Martínez-Navarro et al., 2009, 2012), with rich core-choppers-flake assemblages and also a small but
distinctive group of crude Early Acheulian bifaces, trihedrals, and quadrihedrals. 20: Thomas Quarry I-Unit L at Casablanca, Morocco (1.3–0.5 Ma; Gallotti et al.,
2021), which preserves Acheulian assemblages made of quartzite and flint resulting from two production systems, one focused on the production of small to
medium-sized flakes, the other devoted to the manufacture of large cutting tools. 21: Tighennif (formerly Ternifine), Argelia (∼1.0 Ma; Sahnouni et al., 2018a), with
Acheulian tools associated to remains of large mammals accumulated in a primary context. 22: Aïn Boucherit (2.4–1.9; Sahnouni et al., 2018b) and Aïn Hanech,
Argelia (∼1.7 Ma; Parés et al., 2014), which preserve Oldowan tools similar to those known at eastern African sites, as well as evidence of cutmarks and use-wear
traces that indicate the exploitation by early Homo of animal tissues and marrow. 23: Oued Sarrat, Tunisia (∼0.7 Ma; Martínez-Navarro et al., 2014b), which has
yielded the oldest known cranium of Bos primigenius, associated with other small and large vertebrates, and six Acheulian tools. (B) Chronostratigraphic chart of
Early Pleistocene to early Middle Pleistocene sites with evidence of hominin presence in Europe, North Africa, the Levantine Corridor, and the Caucasus. This chart
shows the geochronological units, the land mammals’ ages, the magnetostratigraphic units, and the biochronological units (French and Spanish biozones based on
micromammals). Marine Isotope Stages (MIS) from Lisiecki and Raymo (2005). Biozones from Palombo (2010) and Minwer-Barakat et al. (2012).

area of alluvial and fluvial deposits as well as the glacis surface,
is digitized with ImageJ for calculating the surface habitable by
the terrestrial fauna. Based on this estimate, we deliver inferences
on the size of the hominin population using the estimates of
population density obtained for the hunter-gatherer groups of BL
and FN3 (Rodríguez-Gómez et al., 2016a). This in turn leads us
to discuss on the long-term viability of this hominin population
and the discontinuity of the archeological record in the Guadix-
Baza Depression.

RESULTS AND DISCUSSION

Hominin Subsistence Strategies in the
Guadix-Baza Depression
The lithic assemblages from BL and FN3 are composed of
abundant flakes of small size, cobbles (one third with percussion
marks), cores, debris, and flake fragments. The flakes are largely
made of flint and, to a lesser extent, of limestones and calcarenites
from the surroundings of the sites. Flint was exploited for
flake production whereas limestone, although used also for flake
production, was mostly employed as percussion instruments
(Barsky et al., 2010; Titton et al., 2018). Recently, Titton et al.
(2021) indicated that BL is the oldest case reported of knapping
and percussive activities on an ancient raw material reservoir
deposit, because the analysis of the entire lithic collection of
the site describes a tool kit composed of cores, flakes, debris,
hammerstones, and other macro-tools like heavy-duty scrapers
and sub-spheroidal morphologies. Moreover, the positioning of
refitting items in the site points to in situ knapping (Toro-
Moyano et al., 2013), which reaffirms the importance of BL as
a raw material repository.

Many primates consume animal resources, but only humans
regularly exploit animals the same size or larger than themselves
(Butynski, 1982; Pobiner, 2020). Large ungulates represent
concentrated packages of fat and protein, which are easily
digestible and calorically rich macronutrients, and contribute
micronutrients that are scarce in plants, such as heme-iron,
folic acid and vitamin B12 (Thompson et al., 2019). Internal
bone nutrients (e.g., brains and marrow) provide to humans
the precursors to docosahexaenoic fatty acids and oleic acids,
key for brain development and female reproductive success
in hunter-gatherer societies (Plummer, 2004; Pobiner, 2020).

This explains why the consumption of large ungulates was
a fundamental component of the high-quality diet that
allowed the evolutionary transformations that led to the genus
Homo (e.g., reduction of postcanine teeth, brain expansion,
enhanced cooperation with non-kin, and shorter interbirth
intervals). For this reason, the tool-use/meat-eating package
has been considered as inherently linked to the definition
of Homo (Jiménez-Arenas et al., 2014; Thompson et al.,
2019; Pobiner, 2020; however, for a recent criticism of the
narrative that links the anatomical and behavioral traits of
H. erectus to an increase in meat eating, see Barr et al.,
2022).

The technological features of the lithic tools from BL and FN3,
including the small dimensions of the flakes, allow discussing
on carcass acquisition and processing by these hominins. This
relates to the classic debate on Homo as a hunter or as a
scavenger. During the eighties and nineties, most researchers
interpreted the cut marks found in the Early Pleistocene sites
of East Africa as evidence of defleshing activities by the
Oldowan hominins of ungulate carcasses obtained through
passive scavenging, which implied a secondary access to these
resources (Binford, 1981, 1985; Blumenschine, 1986, 1987, 1991,
1995; Blumenschine and Selvaggio, 1988; Blumenschine et al.,
1994; Capaldo, 1997; Selvaggio, 1998; Arribas and Palmqvist,
1999). In contrast, from the nineties onward a new scenario
was considered, which envisaged the Oldowan hominins as
having primary access to fully fleshed carcasses obtained from
hunting or through active, confrontational scavenging (Bunn and
Ezzo, 1993; Domínguez-Rodrigo, 1999; Bunn, 2001; Domínguez-
Rodrigo and Piqueras, 2003; Domínguez-Rodrigo and Barba,
2006; Domínguez-Rodrigo et al., 2007, 2014; Bunn and Pickering,
2010). The reasoning, based on actualistic studies of predation,
was as follows: although the large felids do not consume bone
marrow contents, which opened to early Homo the opportunity
to scavenge these resources, they exploit intensively the prey
carcass, which results in a low availability of flesh. The lions of
Tarangire National Park (Tanzania) are a good example: they
efficiently deflesh small and medium-sized ungulate carcasses
and in alluvial environments near water, they even thoroughly
deflesh carcasses of prey heavier than 500 kg such as buffalo
(Gidna et al., 2014). However, a study on the potential
scavenging opportunities in Sweetwaters Game Reserve (Kenya),
a conservancy area where lions face a low level of inter-specific
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FIGURE 2 | (A) Geological context of the Guadix-Baza Depression in the Betic Cordillera, SE Spain. The box encloses the sedimentary basin. Black dots indicate
the thermal springs (N = 122) that are nowadays active in the Betic Cordillera, with water output temperatures between 18 and 60◦C. (B) Tectono-sedimentary map
of the Guadix-Baza Depression with indication of those points that preserve geochemical, mineralogical or lithological evidence of thermal activity during the
Neogene-Quaternary. Geological cartography updated from García-Aguilar et al. (2014, 2015: Figure 1, respectively). 1-External Zones, 2-Internal Zones,
3-Tortonian marine deposits, 4-Turolian alluvial and lacustrine deposits, 5-Plio-Pleistocene alluvial and fluvial deposits, 6-Pliocene lacustrine deposits of the
Gorafe-Huélago sector, 7-Late Turolian-Ruscinian lacustrine deposits in the Baza Basin, 8-Middle Villafranchian fluvio-lacustrine deposits, 9-Middle Villafranchian
lacustrine marls and evaporites, 10-Late Villafranchian lacustrine deposits, 11-Middle Pleistocene alluvial and lacustrine deposits, 12-Late Pleistocene glacis surface,
13-Holocene fluvial terrace, 14-Modern fluvial sediments, 15-Faults (solid lines; striped lines indicate those faults covered by sediments that have been inferred from
aerial photographs), 16-Thermal springs nowadays active, 17-Sulfur deposits, 18-Travertine buildings, 19-Black levels, 20- Magnesium clays, and 21-Silexites.
(C) Stratigraphic series of Barranco León (BL) and Fuente Nueva 3 (FN3) sites (adapted from Espigares et al. (2019)). (D) View of the excavation quarry of FN-3.
(E) View of the excavation quarry of BL.
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competition from hyenas, has shown that lions abandoned 95%
of bones of large prey with at least some scavengeable flesh,
and over 50% were left with large muscle masses. Moreover,
while the scavengeable resources from fresh kills made by
lions vary among prey carcasses, a single carcass of a large
prey abandoned with only flesh scraps remaining (and all
bone marrow contents intact) was usually substantial enough
to satisfy the total daily caloric requirements of at least one
adult male of Homo erectus, as exprapolated from an estimate
for anatomically modern humans (Pobiner, 2015, 2020). This
provides a solid argument for interpreting the Oldowan hominins
as confrontational kleptoparasites or even as marginal, passive
scavengers. However, human impact is high in Sweetwaters, and
this could modify the behavior of lions, which deflesh their prey
more thoroughly in those ecosystems where no modern humans
threaten them (Gidna et al., 2014). In any case, Blumenschine
and Pobiner (2007) estimated that the marrow that a hominin
could extract from twelve long bones of an adult wildebeest
carcass would represent 3,000 kcal, a value close to the daily
energetic requirements of an adult early Homo (Aiello and Wells,
2002). In addition, Bickerton and Szathmáry (2011) suggested
that the populations of H. erectus would have access to at least
one elephant carcass resulting from natural death every month
per 1000 km2 foraged.

Sabertooths and Scavenging
Opportunities for the Hominins
The hunting vs. scavenging debate was largely focused on
the sequence of carcass access initially proposed for the bone
assemblage from the FLK Zinjanthropus site at Olduvai, based
on the frequency of tooth-marked and percussion-marked long
bones of large mammals (Blumenschine, 1995; Capaldo, 1997;
Selvaggio, 1998). The model considered a three-stage sequence
of site formation: (i) in stage one, flesh-eating felids partially
defleshed long bones, as deduced from the high frequency of
tooth-marks on midshaft fragments; (ii) in stage two, hominins
processed intact long bones for their marrow contents and left
percussion marks, with the presence of cut marks indicating that
the bones retained at this stage variable amounts of flesh; finally,
(iii) in stage three, bone-cracking hyenas consumed long bone
epiphyses for grease, as evidenced by the underrepresentation of
these elements in the assemblage and the high percentage of tooth
marks on the surviving epiphyses and the distal portions of the
diaphyses (see discussion in Arribas and Palmqvist, 1999).

Domínguez-Rodrigo and Barba (2006) suggested that
Blumenschine (1995) overestimated the number of long-bone
midshafts with tooth marks in the FLK 22 assemblage due
to the confusion of these marks with those resulting from
microbial bioerosion, which would indicate primary access by
the hominins to fully fleshed carcasses (but see criticism of
their experimental procedure by Blumenschine et al. (2007)).
The most recent analysis of the FLK 22 assemblage, using GIS
techniques (Parkinson, 2018), has suggested that hominins
had early access to largely fleshed carcasses, particularly those
of smaller prey —which they may have primarily acquired
through hunting— although patterns of bone damage on

TABLE 1 | Faunal lists (large mammals only) from Venta Micena, Barranco León,
and Fuente Nueva-3 (after Alberdi and Ruiz-Bustos, 1985; Moyà-Solà, 1987;
Pons-Moyà, 1987; Martínez-Navarro, 1991; Torres Pérez-Hidalgo, 1992;
Martínez-Navarro and Palmqvist, 1995; Martínez-Navarro et al., 1997, 2010,
2011, 2021; Cregut-Bonnoire, 1999; Martínez-Navarro and Rook, 2003; Abbazzi,
2010; Alberdi, 2010; Lacombat, 2010; Madurell-Malapeira et al., 2010, 2011;
Medin et al., 2017; Bartolini-Lucenti and Madurell-Malapeira, 2020; Ros-Montoya
et al., 2021; and references therein).

VENTA MICENA BARRANCO LEÓN FUENTE NUEVA-3

Homo sp. Homo sp. (only lithics)

Ursus etruscus Ursus etruscus Ursus etruscus

Lycaon lycaonoides Lycaon lycaonoides Lycaon lycaonoides

Canis orcensis Canis mosbachensis Canis mosbachensis

Vulpes alopecoides Vulpes alopecoides Vulpes alopecoides

Pachycrocuta brevirostris Pachycrocuta brevirostris Pachycrocuta brevirostris

Megantereon whitei Machairodontinae indet. Megantereon whitei

Homotherium latidens Cf. Homotherium sp.

Panthera
gombaszoegensis

Lynx cf. pardinus Lynx cf. pardinus

Meles meles Meles meles Meles meles

Martellictis ardea Martellictis ardea

Mammuthus meridionalis Mammuthus meridionalis Mammuthus meridionalis

Stephanorhinus cf.
hundsheimensis

Stephanorhinus
hundsheimensis

Stephanorhinus
hundsheimensis

Equus altidens Equus altidens Equus altidens

Equus sussenbornensis Equus sussenbornensis

Hippopotamus antiquus Hippopotamus antiquus Hippopotamus antiquus

Bison sp. Bison sp. Bison sp.

Hemibos sp. cf. H. gracilis

Praeovibos sp.

Soergelia minor Ammotragus europaeus Ammotragus europaeus

Hemitragus albus Hemitragus albus Hemitragus albus

Caprini gen. et sp. indet.

Praemegaceros cf.
verticornis

Praemegaceros cf.
verticornis

Praemegaceros cf.
verticornis

Metacervocerus rhenanus Metacervocerus
rhenanus

Metacervocerus rhenanus

Capreolus sp.

larger carcasses are consistent with secondary access through
aggressive scavenging (Pobiner, 2020). In any case, we must
bear in mind that the interpretive context that envisions the
Oldowan hominins as primary hunters is based on experimental
studies performed on modern felids, which thoroughly exploit
the carcasses of their prey. This context does not apply to the
Early Pleistocene hominin populations with Oldowan tools of
Africa and Europe, where the predator guild was dominated by
two sabertooths, Megantereon whitei and Homotherium latidens
(Martínez-Navarro and Palmqvist, 1995, 1996; Arribas and
Palmqvist, 1999; Palmqvist et al., 2022a).

Sabertooths have no living analogs and dominated the
carnivore guild during most of the Cenozoic, filling the niche
now occupied by the pantherine felids (Van Valkenburgh, 2001,
2007). Their long and laterally flattened upper canines were
an adaptation for killing quickly megafaunal prey with deep
wounds onto the prey throat rather than using the prolonged
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suffocating throat bite typical of the extant felines (Gonyea, 1976;
Akersten, 1985; Anyonge, 1996a; Antón et al., 2004; McHenry
et al., 2007; Christiansen, 2008; Meachen-Samuels and Van
Valkenburgh, 2010; Salesa et al., 2010; Andersson et al., 2011;
Meachen-Samuels, 2012). However, canine hypertrophy posed a
biomechanical constraint on mandibular gape for delivering the
killing bite, which involved a major reorganization of the skull
to avoid over-stretching of the temporalis muscle during wide
gaping (Figure 3) and led to a reduction of the premolar teeth.
This is particularly evident in the African sabertooth M. whitei,
which dispersed out of Africa by ∼1.8 Ma (Martínez-Navarro
and Palmqvist, 1995, 1996; Palmqvist, 2002): compared to the
less specialized M. cultridens, the species replaced in Europe
by M. whitei during the late Early Pleistocene, the third lower
premolar is reduced in M. whitei to a vestigial peg or even lost,
while the fourth premolar and the paraconid of the carnassial
are shortened but to a lesser degree, which reflects the greater
enlargement of the sabers in the African species (Palmqvist et al.,
2007). This resulted in lesser abilities to process the prey carcass
and made it available more scavengeable resources for the hyenas
and the hominins, which provides the ecological connection
between the dispersal of M. whitei out of Africa and the first
arrival of Homo in Europe, a continent where the survival of
hominins during the cold season —with lowered plant resources
compared to East Africa— depended on the regular scavenging
of ungulate carcasses (Turner, 1992; Martínez-Navarro and
Palmqvist, 1995, 1996; Arribas and Palmqvist, 1999; Martínez-
Navarro, 2004, 2010; Palmqvist et al., 2007, 2022a).

Microwear analyses of canines and carnassials provides
additional evidence on the lower ability of sabertooths to process
the prey carcass. A comparison of the frequency of pits and
scratches in the canines of the North American Smilodon fatalis
and other living carnivores with disparate feeding and hunting
repertoires (e.g., spotted hyenas, lions, cheetahs, and wild dogs)
showed that these teeth were used by S. fatalis for prey killing and
avoided contact with bone during prey consumption (Anyonge,
1996b). In the case of the wear facet of the carnassials, which
are employed exclusively in food processing, the bone-cracking
hyenas exhibit few long scratches and a high proportion of pits
to scratches, while the cheetah (which feeds exclusively on soft
organs and only consumes bones of small prey; Schaller, 1968;
Brain, 1981; Skinner and Smithers, 1990) shows a predominance
of narrow scratches with very few pits. Strikingly, the microwear
pattern of S. fatalis showed relatively narrow and long scratches
combined with an extremely low frequency of pits, even lower
than in the cheetah (Van Valkenburgh et al., 1990). This suggests
that sabertooths probably consumed even less bone than the
cheetah to prevent canine breakage, which means that their
prey carcasses would retain a significant fraction of scavengeable
resources (Van Valkenburgh et al., 1990).

The elongated, laterally flattened canines of sabertooths were
optimal for killing large prey, but also were more vulnerable to
fracture than the shorter and conical canines of the living felids
due to the unpredictable loads generated in prey stabilization
during the killing bite (Van Valkenburgh and Hertel, 1993; Van
Valkenburgh, 2009). This made the heavily muscled forelimbs of
sabertooths imperative for pulling down and immobilizing prey

before positioning the killing bite (Gonyea, 1976; Akersten, 1985;
Anyonge, 1996a; Antón et al., 2004; Christiansen, 2008; Salesa
et al., 2010; Andersson et al., 2011; Meachen-Samuels, 2012).
The latter is reflected in the short and robust forelimb bones
of S. fatalis, reinforced by cortical thickening, which allowed it
to minimize prey struggling, helping to position the killing bite
carefully to avoid contact with bone (Meachen-Samuels and Van
Valkenburgh, 2010; Martín-Serra et al., 2017). A comparative
study of the skulls of S. fatalis and the lion based on finite element
analysis showed that the sabertooth skull was less equipped to
resist the forces generated by a struggling prey, which pointed to
rapid slashing bites during prey killing (McHenry et al., 2007). In
contrast, the lion uses its stouter canines to hold a suffocating bite
in the snout of large prey such as buffalo, which explains that the
forelimbs are less important for subduing prey (Salesa et al., 2010;
Meachen-Samuels, 2012; Martín-Serra et al., 2017). Moreover,
Figueirido et al. (2018) showed that the rostrum of S. fatalis
was almost entirely composed of cortical bone (which supports
better directed loads) while the lion skull had a substatinal
amount of trabecular bone (which can support unpredicted and
multidirectional forces). This indicated that the skull of S. fatalis
was well-equipped to deliver a quick killing-shear bite, but it
could not withstand the unpredictable forces generated when
feeding on bones (Figueirido et al., 2018).

The highly derived craniodental and postcranial anatomy
of sabertooths suggests that the pantherine felids cannot
be considered as their modern functional analogs, because
sabertooths: (i) were able to hunt larger ungulate prey relative
to their body size, exerting a higher predation pressure on the
juveniles of megafauna; and (ii) exploited their prey to a lesser
extent, which would have resulted in greater amounts of flesh
abandoned in the prey carcass (Binford, 1980, 1981; Marean
and Ehrhardt, 1995; Arribas and Palmqvist, 1999; Palmqvist
et al., 2003, 2007, 2011, 2022a,b; Ripple and Van Valkenburgh,
2010; Martínez-Navarro et al., 2014a; Van Valkenburgh et al.,
2016; Martín-Serra et al., 2017; Martínez-Navarro, 2018). These
resources would in turn be available for the scavengers, including
the hominins and hyenas, as documented at FN3 (Espigares et al.,
2013, 2019; Yravedra et al., 2021). This interpretation makes
sense if we consider the lack of an effective weaponry in the
Oldowan hominins for subduing large prey with their small
flint flakes and cores, or for driving predators from their kills
acting as kleptoparasites (Potts, 1991; Blumenschine and Pobiner,
2007; Treves and Palmqvist, 2007). However, throwing stones for
driving away carnivores and stealing their prey would be always a
possibility, as suggested by Lordkipanidze (2015) for explaining
the abundant allochtonous cobbles found in Dmanisi (Coil
et al., 2020). Interestingly, manuports of dolomitic limestone are
abundantly represented in FN3 (Espigares et al., 2013).

While it has been argued that expanding group sizes prompted
Acheulean hominins to become big game hunters (Martínez-
Navarro, 2018), perhaps including elephants as their prey (Agam
and Barkai, 2018), it is difficult to conceive that the limited
technological skills of the Oldowan hominins allowed them to
prey on megafauna. Therefore, it is thus more reasonable to
consider that Early Homo initially expanded its diet from the
major reliance on plant foods of australopithecines to scavenging
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FIGURE 3 | Comparison of the craniodental anatomy of a leopard, Panthera pardus (A), with a sabertooth, Megantereon nihowanensis (B). The lines X and X′

measure the stretching of temporalis muscle from the tip of the coronoid process to the sagittal crest with the jaw closed and open, respectively. The elongation of
the upper canines of sabertooths posed a severe biomechanical constraint on mandibular gape for delivering the killing bite, which involved a major reorganization of
the temporalis to avoid over-stretching of the muscle fibers during wide gaping. This was achieved by a number of changes in their craniodental anatomy compared
to the pantherine felids (Emerson and Radinsky, 1980; Akersten, 1985; Palmqvist et al., 2007; Slater and Van Valkenburgh, 2008; Figueirido et al., 2011; DeSantis
et al., 2021): (i) a lowered glenoid fossa; (ii) a shortened coronoid process and a laterally shifted angular process; (iii) a less laterally projected postglenoid process; (iv)
an upwardly rotated palate; (v) a shorter and narrower temporal fossa; (vi) a more vertical occiput; and (vi) a protruding incisor arcade, which independized the
hypertrophied upper canines from the incisors. Such skull reorganization resulted in a narrowing of the temporalis fibers and their more perpendicular orientation to
the tooth row, which allowed to increase jaw gape up to 180◦ in sabertooths while retaining a degree of muscle stretch like that of pantherine felids. Moreover, the
masseter muscle, which exerts its maximum force at smaller gapes, was also reduced. Panel (A) shows that with a jaw gape of 60◦, the degree of muscle stretching
of the temporalis (measured by the ratio between X′ and X) in the leopard (∼85%) is like in Megantereon (B) with a gape of 120◦ (∼80%). A result of this major skull
reorganization in sabertooths was that the point of maximum bite force exerted at the carnassial was positioned more backwardly, which led to a reduction of the
post-canine dentition not related to the slicing function of the carnassial. The protruding incisor arcade of sabertooths (B) helped these predators to avoid canine
breakage when feeding on the prey carcass because it independized the function of the incisors, used to tear chunks of flesh from the prey carcass (a task
performed in modern felids by their stout, conically shaped canines), from the function of the canines, employed to deliver deep wounds during prey dispatch
(Biknevicius et al., 1996). Thus, prevention of canine breakage during prey killing and feeding encounters was a strong selective agent in sabertooths and suggests
that a non-scavenging behavior was a clear ecological limitation posed by their hypertrophied upper canines.

bone marrow, brains and meat (Ben-Dor et al., 2021). Therefore,
the trophic level of Homo probably evolved from a low base to a
high carnivorous position during the Pleistocene, beginning with
H. habilis as a scavenger and peaking in H. erectus as a hunter
(Ben-Dor et al., 2021; but see Barr et al. (2022)).

Megaherbivores like adult elephants, hippos and rhinos are
often regarded as invulnerable to predation, but it has been
suggested that lions regularly hunted such large prey during the
Pleistocene (Guthrie, 1990). Lion prides have been documented
today hunting elephants, mostly juveniles, in high frequencies in
those environments where other ungulates are scarce, like the
Savuti area of Chobe National Park, Botswana (Joubert, 2006;
Power and Shem-Compion, 2009). However, lions preferentially
prey on medium-to-large ungulates when they are abundant
(Schaller, 1972), within a weight range of 190–550 kg (Hayward
and Kerley, 2005), and only occasionally hunt megafauna
(Palmqvist et al., 1996). In fact, elephants are rarely preyed upon
by lions (Skinner and Smithers, 1990) and when this does occur
it involves yearling calves weakened by drought (Loveridge et al.,
2006) or older animals wounded by poaching (Ruggiero, 1991).

Passive scavenging of ungulate carcasses partially defleshed
by sabertooths would have enhanced the survival of the
hominins of Guadix-Baza during Early Pleistocene times
(Martínez-Navarro and Palmqvist, 1996; Arribas and Palmqvist,
1999; Martínez-Navarro, 2004, 2010; Palmqvist et al., 2005,

2007; Espigares et al., 2013, 2019; Martínez-Navarro et al.,
2014a; Rodríguez-Gómez et al., 2016a, 2017a). We propose here
that they probably exploited a wide repertoire of subsistence
strategies, including: (i) the opportunistic hunting of small-sized
mammals and other vertebrates (e.g., amphibians and reptiles);
(ii) the kleptoparasitism of the prey of primary predators
like sabertooths and wild dogs; and (iii) the opportunistic
scavenging of carcasses of very large animals not exposed in
life to predation that died from other causes, although this is
a rather speculative issue. The latter possibility is supported by
evidence of competition between Homo sp. and P. brevirostris
for the exploitation of a carcass of an old individual of
elephant Mammuthus meridionalis in the upper archeological
level of FN3: the skeleton of this elephant is dismembered and
surrounded in part by flint flakes and coprolites, which suggests
a sequential pattern of consumption by the hominins and hyenas
(Espigares et al., 2013).

A mathematical model that evaluates the sustainability of
the community of secondary consumers, based on the biomass
of primary consumers potentially available (Rodríguez-Gómez
et al., 2013, 2014a,b, 2016b, 2020), has provided relevant
data on the hominin population that inhabited Guadix-Baza
(Rodríguez-Gómez et al., 2016a). The model estimates: (i) the
age structure and mortality rate that make the population of
each primary consumer stable; (ii) the distribution of individuals
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FIGURE 4 | Relationship between the biomass of predators and prey in
modern ecosystems (data from Hatton et al. (2015)) and ranges of estimates
of predator and prey biomass values obtained for the Orce sites [data from
Rodríguez-Gómez et al. (2016a, 2017a)]. Fossil assemblages: Barranco
León/Fuente Nueva 3 (maximum: red cross, minimum: green dash) and Venta
Micena (maximum: yellow ex, minimum: blue asterisk). Least-squares
regression equation derived with software SPSS v. 25.

among size categories; (iii) the biomass that the secondary
consumers can extract from these populations in the long
term; and (iv) resource distribution among the members of the
carnivore guild. In the case of hominins, the model considered
a dietary contribution of 30% of animal resources, in agreement
with the diet of modern hunter-gatherer populations at temperate
latitudes (Rodríguez-Gómez et al., 2016a). The hunting and
scavenging scenarios were both modeled for estimating the
population density of Homo sp. in Guadix-Baza. This suggested
a scavenging behavior as optimal for the population, which
would hold 12 individuals per 100 km2 during a year, a value
close to the mean density of modern hunter-gatherers (Binford,
2001; Marlowe, 2005). The density estimated for a strict hunting
behavior was slightly lower, 9.5 individuals/100 km2 (Rodríguez-
Gómez et al., 2016a). Given that both estimates are similar, to
consider a scavenging or a hunting behavior has little effect on
the size of the hominin population of the basin, as noted above.
The densities estimated for the hominins and carnivores in the
Orce sites (Figure 4) agree with the prey/predator biomass ratios
derived with the equation of Hatton et al. (2015).

“Meat made us humans” is a recurrent topic in any debate
on the subsistence strategies of hominins (Bunn, 1981, 2007;
Stanford, 1999; Bunn et al., 2017). This relates to the evolutionary
trend toward increasing encephalization in the genus Homo,
because the high maintenance cost of the nervous system
involved a reduction of the digestive tract and a shift toward a
more carnivore diet compared to the australopithecines (Leonard
and Robertson, 1994, 1996; Aiello and Wheeler, 1995; Jiménez-
Arenas et al., 2014). However, the subsistence strategies of early
Homo probably included a broader spectrum of resources (e.g.,
small mammals, birds, herpetofauna, invertebrates, eggs, honey,
and edible vegetation) that do not leave archeological evidence

(Blasco et al., 2011; Hardy et al., 2017; Prado-Nóvoa et al.,
2017; Espigares et al., 2019), as happens in the case of modern
hunter-gatherers like the !Kung of the Kalahari Desert and the
Hadza of northern Tanzania (Woodburn, 1968; Ho et al., 1972;
Lee, 1979; Silberbauer, 1981; O’Connell et al., 1988; Hawkes
et al., 1991; Cordain et al., 2000; Binford, 2001; Bunn, 2001;
Marlowe, 2005). Lee (1968), Cordain et al. (2000), and Marlowe
(2005) have shown a negative correlation between gathering and
latitude due to the decrease with latitude in the availability of
edible plants. In contrast, gathering is the dominant mode of
subsistence in latitudes like those of the Orce sites. In the Baza
Basin, freshwater fish could have also been a regular source
of long-chain polyunsaturated fatty acids (e.g., omega n-3, n-
6 and docosahexaenoic acids) that are essential for the early
development of the brain, retina and other neural tissues (Uauy
et al., 2001; Kuipers et al., 2010).

There is a lack of knowledge on the vegetal resources available
at the Orce sites, as all attempts to extract fossil palynomorphs
from the sediment were unsuccessful and even the coprolites
of hyena analyzed were palynologically sterile (Carrión, 2002;
Carrión et al., 2009). Despite this, inferences on the past
vegetation of the basin have been derived from d 13C and d 15N
isotopes in the bone collagen of the herbivores of VM (Palmqvist
et al., 2003, 2008a,b), which allowed to infer their feeding
habits. Specifically, the species (Table 1) were classified among:
(i) browsers (rhino Stephanorhinus hundsheimensis and deer
Praemegaceros verticornis); (ii) mix-feeders (ovibovine Soergelia
minor and deer Metacervocerus rhenanus); and (iii) grazers
(horse Equus altidens, Bison sp., muskox Praeovibos sp., goat
Hemitragus albus, and M. meridionalis). The predominance of
taxa adapted to grazing in open habitat agrees with: (i) the
synecological reconstruction of this paleocommunity as a plain
with bush/forest patches (Mendoza et al., 2005; Saarinen et al.,
2021); and (ii) the estimate of∼780 mm of annual rainfall derived
from the range of d15N values in the ungulates that fed on
terrestrial vegetation (García-Aguilar et al., 2014), which is close
to the estimate of ∼750 mm obtained from the herpetofauna
of BL and FN3 (Blain et al., 2016). According to Blain et al.
(2021), the first hominin occupations in Western Europe (e.g.,
BL/FN3 and TE9) would correspond to warm and humid
conditions in an open ‘savanna’ environment with 20–25% wood.
A study of the herpetofaunal assemblages of BL and FN3 has
indicated different conditions for the levels with the highest
density of anthropic evidence at these sites: a humid, wooded
biotope for BL and a more open and drier biotope for FN3
(Sánchez-Bandera et al., 2020).

Most ungulate species present at VM are also represented
in the faunal assemblages of BL and FN3 (Table 1). The
exceptions are the mesodont S. minor, which is replaced by the
hypsodont caprine Ammotragus europaeus, and the presence of a
second equid species, the large-sized horse Equus sussenbornensis
(Moullé et al., 2004; Alberdi, 2010; Martínez-Navarro et al., 2010).
Hindgut fermenters process a large volume of food in a short time
and can feed on low quality grasses too fibrous for a ruminant
to subsist on (Janis, 1976; Janis et al., 1984; Duncan et al., 1990).
For this reason, the presence of two hypergrazing equids in BL
and FN3 suggests more arid conditions and an herbage of lower
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quality than in VM (Palmqvist et al., 2008a). This would result
in a decrease in the abundance of fruits and other succulent plant
stuffs for the hominins, which would make them more dependent
on animal resources.

Hominin and Carnivore Involvement in
Barranco León and Fuente Nueva 3
Espigares et al. (2019) reported on the cut marks and percussion
marks identified in BL and FN3 (see also Yravedra et al. (2021)
for FN3). Tooth marks produced by carnivores, particularly the
hyena P. brevirostris, were also found in the bone assemblages of
both sites, but at lower frequencies than in the hyena den of VM
(Palmqvist et al., 1996, 2005, 2011, 2022b; Luzón et al., 2021).
To evaluate the contribution of hominins and carnivores to the
site formation process in BL and FN3, we have performed here
a study on the abundance of limb bone epiphyses and compared
the results with those for VM.

Figure 5 shows the relationship between the abundance of
epiphyses of major limb bones and their estimated marrow
yields in the three Orce sites. The regressions for BL and FN3
show an inverse, statistically significant relationship between
bone survival and marrow contents (r = 0.624, p = 0.05
for BL; r = 0.682, p = 0.03 for FN3), which indicates that
the hominins preferentially fractured the anatomical portions
with greater nutritional value. However, these regression lines
show considerable scatter, as reflected in their wide confidence
95% intervals. There is also a negative relationship in VM,
but much closer in statistical terms (r = 0.885, p = 0.001),
which shows a greater selectivity in bone fracturing by the
hyenas. Figure 6 shows the positive relationship between bone
survival and mineral density in the three sites. Again, BL and
FN3 show lower levels of statistical significance (r = 0.636,
p = 0.003 for BL; r = 0.548, p = 0.015 for FN3) and more
scatter around the regression lines than VM (r = 0.745,
p < 0.0001 for VM).

Marrow determines the interest of the bone collecting and
modifying agent on the nutritional contents of the skeletal
remains, while mineral density is behind the effort invested in
accessing these resources. The hominins fractured the bones in
BL and FN3 using stones, a task relatively straightforward that
did not represent a major effort, which originated percussion
marks (Espigares et al., 2019; Yravedra et al., 2021). Therefore,
it is not expected that they were highly selective in their
choice of the bones to be fractured, apart from focusing more
on the remains that provided more marrow. However, hyenas
fractured the bones in VM using their robust premolar teeth
assisted by their massive jaws (Palmqvist et al., 2011), which
resulted in abundant spiral and longitudinal fractures (Arribas
and Palmqvist, 1998). Hyenas were at risk of breaking their
teeth or dislocating their jaws while fracturing the densest bones,
which forced them to be more selective than the hominins (who
risked nothing when fracturing bones with stones). Thus, our
results suggest that although BL and FN3 record evidence of
hominin and carnivore activity, the main agent involved in the
accumulation and modification of the remains preserved at both
sites were the hominins.

FIGURE 5 | Relationship between the survival of major limb bone epiphyses
and their estimated marrow contents (mean for modern horse and bison;
Outram and Rowley-Conwy, 1988; Brink, 1997) in BL, FN3, and VM. H,
Humerus; Ru, Radius/ulnae; F, Femur; T, Tibia; Met, Metapodials; p, Proximal;
d, Distal. Striped lines represent the 95% confidence intervals below and
above the regression lines. Least-squares regression equations derived with
software SPSS v. 25.

The hyena P. brevirostris, the jackal-sized Canis mosbachensis
and a large-sized crow (unpublished specimen VM-3121,
preliminarily classified as Corvus sp.; by the moment, this
species has not been identified in BL and FN3) were indeed
worthy competitors of the hominins for carrion in BL and FN3.
Soaring at high altitude is an energetically efficient mode of
locomotion, which allows vultures to cover huge distances and
discover carcasses by sight or watching the movements of other
neighboring birds such as crows (Palmqvist and Vizcaíno, 2003).
Hyenas and jackals often rely upon visual clues such as circling
vultures to identify scavengeable resources, and then run long
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FIGURE 6 | Relationship between the survival of skeletal remains and their
estimated mineral density (mean for modern horse, gnu and raindeer; Lam
et al., 1999) in BL, FN3, and VM. Hum, Humerus; Rad, Radius; Fem, Femur;
Tib, Tibia; Met, Metapodials; Astr, Astragalus; Calca, Calcaneum; Pha,
Phalanges; pr, Proximal; di, Diaphysis; ds, Distal. Striped lines represent the
95% confidence intervals below and above the regression lines.
Least-squares regression equations derived with software SPSS v. 25.

distances to secure the carcass (Bramble and Lieberman, 2004).
However, they do not perform well running at long distances, as
they need to rest after relatively short distances to breathe and
cool down. In contrast, humans are comparatively poor sprinters
but are well adapted for endurance running (i.e., running
many kilometers at relatively low speed over extended time
periods using aerobic metabolism) (Bramble and Lieberman,
2004; Lieberman et al., 2007; Pickering and Bunn, 2007;
Liebenberg, 2008; Ruxton and Wilkinson, 2012). This results
in an advantage for scavenging in open habitats during the

day, particularly during the dry season, when other terrestrial
scavengers are prevented from running long distances due
to thermoregulatory constraints (Lieberman et al., 2007).
Endurance running may have allowed early Homo to reach
carcasses before other terrestrial scavengers and to exploit them
until surrendering them on the arrival of potentially dangerous
hyenas. However, the advantages of endurance running are not
unanimously accepted. Pickering and Bunn (2007) argued that
endurance running: (i) would have required for hunting that in
the absence of visual contact, hominins had the ability to track
prey; (ii) is not common among modern foragers except for
very open and hot habitats, because it is a physically demanding
activity; and (iii) scavenging in modern riparian woodland
habitats would result in a low competition intensity for carcasses.
These arguments are based on two flawed assumptions, the
presumptive link between modern human-like cognition and
tracking abilities, as well as the notion that the limited (and
biased) modern ethnographic record provides an adequate
reflection of past behaviors (Lieberman et al., 2007).

Hominins entered the carnivore guild when they became
scavengers (and later hunters), which forced them to compete
with other carnivores using a combination of strength, speed,
stealth, and cooperation. Modern foragers are no exception
in this, as a high percentage of scavenging opportunities
observed among Hadza and other hunter-gatherers involve
power scavenging for driving off lions or hyenas from their
kills using simple weapons like sticks and stones (Potts, 1991;
Blumenschine and Pobiner, 2007; Lieberman et al., 2007). Given
that early Homo was neither strong nor powerful, and apparently
lacked projectile weapons, it is debatable whether they could
engage in competition scavenging with dangerous carnivores
(Potts, 1991; Lieberman et al., 2007). Therefore, persistence
hunting and scavenging may have been more common before the
invention of the bow-and-arrow or the domestication of dogs and
horses (Liebenberg, 2008).

Domínguez-Rodrigo and Organista (2007) proposed the use
of the following ratios for evaluating the degree of ravaging
intensity in an assemblage: (i) axial bones to appendicular ones,
which would range from 4.25 for a carcass transported complete
or died in a setting devoid of competition among carnivores, to
0 for a completely ravaged skeleton; (ii) femur to tibia, which
would range from 1 in a ravaging-free assemblage to 0 in one
with maximum ravaging intensity; and (iii) proximal humerus
plus distal radius to distal humerus plus proximal radius, which
relates to the relative abundance of the least dense bone portions
(preferentially consumed by the carnivores) to the densest ones,
and takes a value between 1 in an undisturbed carcass and 0 in the
situation of highest ravaging. The second ratio is only relevant
if carnivores had primary access to complete bones and not to
bones already broken by hominins (Domínguez-Rodrigo and
Organista, 2007). In the latter case, when taphonomic evidence
indicates that the hominins broke long limb bones (as in BL
and FN3) and only bone portions instead of whole bones were
available for ravaging, they recommend the third ratio as the
most informative.

Girdle and limb bones are between three and five times more
abundant at the hyena den of VM than vertebrae and ribs,
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depending on the excavation quarry analyzed (García-Aguilar
et al., 2015; Luzón et al., 2021; Palmqvist et al., 2022b). Ribs are
scarcely represented at VM by small fragments and are even less
abundant in BL and FN3 (Espigares, 2010). The ratio of ribs,
vertebrae and girdle bones to limb bones is 17.9% (52/290) in BL
and 11.8% (35/296) in FN3, figures that compare well with VM,
13.5% (532/3,942). In VM, the overrepresentation of the elements
of the appendicular skeleton over those of the axial skeleton
indicates the dismemberment by hyenas of the ungulate carcasses
scavenged and the preferential transport of the limbs to their
denning sites (Palmqvist and Arribas, 2001). Our data suggest
that the assemblages of BL and FN3 were also biased by the
selective transport of remains by the hominins, who were focused
to marrow extraction of the remains in a safe place (Espigares
et al., 2013). The third ratio shows similar values in the three sites:
0.37 (7/19) in BL, 0.30 (7/23) in FN3 and 0.32 (89/274) in VM. In
contrast, there are differences in the values of the ratio of femur to
tibia: 0.63 (20/32) in BL, 0.47 (14/30) in FN3 and 0.23 (107/465)
in VM. This suggests that the hominins broke the major limb
bones in BL and FN3 for exploiting their marrow contents and
this led to the loss of the resource that would make them more
attractive to the hyenas, thus explaining their better preservation
in BL and FN3 than in VM.

Early Pleistocene Environments of the
Guadix-Baza Depression
In the Early Pleistocene, the environments of the Baza Basin were
dominated by shallow lacustrine systems fed by the precipitation
of meteoric waters on the lake surface as well as by the
contribution of alluvial waters and thermal springs (García-
Aguilar and Palmqvist, 2011; García-Aguilar et al., 2014, 2015).
This led to deposits of marls, calcilutites, limestones, evaporites,
sands, and dark lutites (Figure 2B). The lacustrine systems
were dynamic in both time and space, as evidenced by the
lateral wedging of the facies linked to these environments, which
resulted in the appearance of non-flooded areas inhabited by the
mammalian community and the hominins.

The cartography of the Late Villafranchian deposits that
correspond to the archeological levels of BL and FN3 allows
reconstructing their paleogeographic context (Figure 7). This was
characterized by large flood plains crisscrossed by channels in the
Guadix Basin as well as in the W and SW sectors of the Baza
Basin, with a lacustrine system that spread through the N and NE
sectors of the Baza Basin (Cortes de Baza-Huéscar-Orce sector,
Figure 2B). The lacustrine deposits represent a stratigraphic unit
with a maximum thickness of 40 m (up to 50–60 m in the lake
depocenter), which preserves the main sites of Orce. The unit
shows an alternation of levels of marls-calcilutites and limestones,
each one meter thick on average, with intercalations of thin levels
of dark lutites and detritic facies (conglomerates and sands) to the
lake borders (García-Aguilar et al., 2014).

Several mollusks (gastropods Bithynia tentaculata, Hydrobia
aff. acuta, Melanoides tuberculata, and Gyraulus cf. laevis; bivalve
Pisidium casertanum; Figures 8E–I) indicate the presence of
an euryhaline environment in BL (Albesa and Robles, 2020).
The lacustrine sediments of BL preserve shells of two ostracods,

Candona sp. and Cyprideis torosa (Anadón et al., 1994), which
live in oligo- to mesosaline conditions (Figures 8A,B). The limits
of tolerance to salinity of these species provide clues on the lake
waters: B. tentaculate, H. acuta, and M. tuberculata can live with
elevated salinities (12–30h), but their optimum is lower (0.2–
3h for M. tuberculata). In contrast, P. casertanum and G. laevis
tolerate salinities of only up to 3–5h (Albesa and Robles,
2020). This indicates a thermophile lacustrine environment with
alternating phases of salinity, from freshwater to moderately
brackish conditions in the lake waters and higher values of
salinity in the surrounding swampy areas. Such inference agrees
with (i) the presence in the sediments of microcrystalline gypsum
originated by neoformation (García-Aguilar et al., 2014); (ii) the
high d15N values measured in the bone collagen of Hippopotamus
antiquus, a species that fed on the aquatic macrophytes that
grew in the oligosaline waters of the lakes instead of consuming
terrestrial grasses, as does the living H. amphibius (Palmqvist
et al., 2003, 2008a,b, 2022a; García-Aguilar et al., 2014); and
(iii) the finding of a common Shelduck (Tadorna tadorna) in
VM (Figure 8J). This waterfowl dwells in coastal mudflats
and lagoons, estuaries, and riverine environments of Europe,
generally occurring in salt or brackish water, where it feeds mostly
on saltwater snail H. acuta (Carboneras and Kirwan, 2018), a
species that can survive at salinities of up to 39h (Britton,
1985). In the case of VM, the ostracodes Ilyocypris bradyi
and I. gibba (Figures 8C,D) provide additional information on
the paleoenvironment: the former lives in high energy streams
with abundant underwater vegetation, while the latter evidences
shallow lake borders with warm and fresh to oligosaline waters,
a sandy substrate and lushy vegetation (Martínez-García et al.,
2015, 2017).

The detritic facies of the Baza Basin are composed of sands and
silts originated in organic-rich coastal lacustrine environments
and emerged plains, although they can also correspond to distal
riverine systems (García-Aguilar et al., 2014). Some sandy and
silty deposits are associated with conglomerates, which represent
flood deposits that penetrated the lakes as highly disorganized
deltas (e.g., level D of BL; Arribas and Palmqvist, 2002).

The estimates of prey biomass (kg/km2) for the Orce sites
(Figure 9), obtained with the Weibull model following the
procedure described by Martín-González et al. (2019) and
Rodríguez-Gómez et al. (2022), are lower than those measured
in several African Natural Parks and Game Reserves, like
Ngorongoro Crater or Amboseli, close to those of Masai Mara,
Savuti, Hluhluwe Imfolozi or the Nwaswitshaka River, and
higher than in Serengeti, Selous or the Okavango Delta, among
many others. This figure shows a direct relationship of prey
biomass with annual rainfall (Figure 9A), but not with mean
annual temperature (Figure 9B). Prey biomass estimates suggest
that meat availability was high in the Orce sites, particularly
compared with most sites of Atapuerca. The only exceptions
are TD6-1,2 and TD8, in which the estimates are only slightly
lower than in BL and FN3. In fact, a comparison of the
faunal assemblages of Atapuerca showed that TD6-1,2 and TD8
were the levels with lowest competition intensity among the
secondary consumers (Rodríguez-Gómez et al., 2013, 2014a,
2017b), even lower than in VM, BL and FN3. This indicates
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FIGURE 7 | Reconstruction of the paleoenvironments of the Guadix-Baza Depression based on the cartographic extent of the Late Villafranchian sediments of the
basin depicted in Figure 1B (for the stratigraphic series sampled, see García-Aguilar et al. (2014): Figure 3). The connecting corridors indicated by arrows are those
open during the late Early Pleistocene, when the sedimentary basin was endorheic. The hydrographic network of the basin was captured in the late Middle
Pleistocene by the Guadiana Menor River, a tributary of the Guadalquivir River. This led to a stage in which erosion dominated over sedimentation (i.e., a transit from
an endorheic regime to an exorheic one). For this reason, the current topography that surrounds the depression shows a corridor to the west of the town of Pozo
Alcón, but this connection did not exist during the late Early Pleistocene.

that, departing from a similar prey biomass, the Orce ecosystems
supported a more diverse predatory guild than those recorded
at TD6-1,2 and TD8 (Rodríguez-Gómez et al., 2016a, 2017a).
Based on a comparison between these results and those derived
with the equations of Rodríguez et al. (2014) to estimate the
maximum carrying capacity of the ecosystems of Orce and
Atapuerca, Rodríguez-Gómez et al. (2022) proposed that the
differences in secondary production between these sites could
result from the exceptional geological conditions of Guadix-
Baza, particularly the presence of thermal springs that provided
a mild and productive paleoenvironment throughout the year
(García-Aguilar and Palmqvist, 2011; García-Aguilar et al., 2013,
2014, 2015).

Figure 7 shows the paleogeographic model of Guadix-Baza
during the late Early Pleistocene, based on cartographic data of
the sedimentary deposits (Figure 2B). The outer perimeter of the
basin, which corresponds to the limits of the surface emerged
and the one covered by the lake waters, encloses an area of
4,050 km2. This encompasses the outcrop area of alluvial and
fluvial deposits (i.e., flood plains, proximal zones of the alluvial
systems and alluvial fans, covered by water only during the rainy

episodes) and the glacis surface, which includes the area with
a gentle slope in the foothills situated up to a height of 20 m
over this surface. This represents a living area for the terrestrial
fauna and the hominins of 2,925 km2, while the outcrop area
of the lacustrine deposits covers 1,125 km2. The extent of the
lake would fluctuate between low-stand stages, which correspond
to the limestone and marly limestone beds deposited during the
drops of the water table, and high-stand stages, which evidence
the rising of the water table that resulted in the deposit of marls
and calcilutites. The emerged area inhabited by the terrestrial
fauna would be greater during the low-stand stages, when the
alluvial feeding of the lake originated in the southern and eastern
reliefs was scarce and of low energy. Given the limited depth of
the lacustrine system (∼2 m on average, with large areas on the
swampy environments of the lake margins showing a decametric
depth), the lowering of the water table would result in wide
emerged areas in the lake surroundings. The opposite situation
would apply to the high-stand stages, when higher precipitations
and a greater recharge of the lake by alluvial waters originated
in the perimeter of the basin took place. This would result in a
more restricted extent of the terrestrial ecosystems. Low-stand to
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high-stand fluctuations would encompass the periodic changes
between warm-moist and cold-dry conditions of climatic cycles,
which would represent variations in the living area for the
terrestrial fauna of 20–25% above (low-stand) and below (high-
stand) the cartographic extent of the deposits drawn in Figure 7.
Moreover, there would be also yearly oscillations in the extent
of the water sheet between the winter and summer seasons.
Finally, Figure 7 shows the sedimentary depression during the
late Early Pleistocene as a closed, endorheic basin with internal
drainage, but with a limited number of connecting corridors for
the terrestrial fauna to other surrounding areas, especially to the
East. For this reason, the ecological scenario of the Orce sector
of the sedimentary depression (a satellite basin of ∼170 km2)
resembles the one found in the Ngorongoro Crater, Tanzania,
which has a similar extent (∼230 km2) and hydrothermal context
(Deocampo and Ashley, 1999; Deocampo, 2005).

Hominin Population of the Guadix-Baza
Depression
The area emerged in the Guadix-Baza Depression (2,925 km2)
allows calculating the population size of Homo sp. that could
inhabit it. As noted earlier, the estimate of hominin population
density for BL and FN-3 is 0.12 individuals per km2 considering a
scavenging behavior as the optimal scenario for the procurement
of ungulate carcasses (Rodríguez-Gómez et al., 2016a). This
translates in a population size of ∼350 individuals, which would
result in 7–12 hominin groups based on the estimates of mean
local group size for modern hunter-gatherers (Binford, 1980;
Marlowe, 2005). If we choose for a strict hunting behavior, which
implies that the hominins had not access to the largest prey
size classes, the population density would be 0.095 individuals
per km2 (Rodríguez-Gómez et al., 2016a). This would result
in a population of ∼280 individuals distributed among 5–9
foraging groups. Both estimates are very low and clearly below
the minimum viable population size for mammals (including
primates), which has been estimated in 3,876 individuals, with a
95% confidence interval of 2,261–5,095 individuals (Traill et al.,
2007). This suggests that although the prey biomass estimated in
the Guadix-Baza was similar or even higher than in many modern
African ecosystems, the viability of the hominin population that
inhabited the sedimentary basin could be compromised due to
random oscillations in population size such as those resulting
from fluctuations in resource availability and epidemics. This
could eventually lead to bottlenecks, genetic drift, inbreeding
depression, and local extinction.

A skull of the hypercarnivorous wild dog Lycaon lycaonoides
(specimen VM-7000) provides evidence of inbreeding depression
in the local population of this species. The skull preserves
the cranium and mandible in anatomical connection and
corresponds to a relatively old individual with moderately
worn permanent dentition (Palmqvist et al., 1999). It displays
a high degree of cranial fluctuating asymmetry (FA), which
is especially marked in the frontal region, and shows dental
anomalies, including agenesia of several teeth like the upper right
canine (Bartolini-Lucenti et al., 2021). The incidence of FA in
a population must be tested at the population level and not

based on a single individual (Palmqvist et al., 1999). However,
the fossil record of L. lycaonoides is scarce in Guadix-Baza (a few
specimens from VM, see details in Palmqvist et al., 2022b) and
VM-7000 is the only complete skull. This limitation on sample
size precludes the hypothetico-deductive method and forces to
use the ‘abductive research method,’ which means that the best
explanation at hand for interpreting the anomalies of VM-7000 is
to consider that they evidence FA resulting from developmental
instabilities caused by inbreeding depression (Palmqvist et al.,
1999; Bartolini-Lucenti et al., 2021).

Fluctuating asymmetry results from small, random accidents
during ontogeny in morphological traits that would otherwise
appear as bilaterally symmetric. These perturbations can also
emerge from developmental stress (e.g., induced by parasitic
infection), but their incidence in a population uses to
correlate with the level of genetic inbreeding, which increases
the homozygosity of enzyme polymorphisms and results in
developmental instabilities (Wayne et al., 1986; Palmqvist et al.,
1999; Leamy and Klingenberg, 2005). Inbreeding increasingly
becomes a serious threat to local wildlife populations as habitats
shrink and fragment (Spiering et al., 2011). This results in
bottlenecks and changes in metapopulation structure, which
translate in a quite small effective population size and lead
to the loss of genetic diversity and inbreeding depression,
as documented in the cheetah (Wayne et al., 1986; Menotti-
Raymond and O’Brien, 1993; Hedrick, 1996; however, see also
Merola (2011)). The expression of the deleterious effects of
increased homozygosity and their consequences for individual
fitness have been shown in canids (Ellegren, 1999; Fitzpatrick
and Evans, 2009; Spiering et al., 2011). Anodontia and cranial
asymmetry are documented in small populations of wolves
subject to bottlenecks and inbreeding, as happens in Białowieża
Forest (Buchalczyk et al., 1981; Vilà et al., 1993). Edwards
et al. (2013) showed an increase in fluctuating asymmetry in
museum skulls of African painted dogs that span a period of
a hundred years, which parallels the decline in the populations
of the species in sub-Saharan Africa during the last century.
This suggests that the malformations of the fossil skull of VM
would reflect developmental instabilities resulting from a high
level of genetic homozygosity in the small population of wild
dogs that inhabited Guadix-Baza during Early Pleistocene times.
Specifically, the population density of L. lycaonoides expected for
optimal ecological conditions, calculated using the equation of
Damuth (1993) for African flesh-eaters in open environments,
is 0.23 individuals per km2 (Rodríguez-Gómez et al., 2017a).
However, the value of sustainable density for this predator in VM
is lower, 0.13 ind./km2, which translates in a population of only
380 individuals (i.e., like the one estimated for the hominins).
Moreover, the effective population size of modern painted dogs
is typically reduced to 20–35% of the censused population by
reproductive suppression of subordinates and uneven sex ratios
(Creel and Creel, 1998). In the case of VM, this would result in an
effective population size for L. lycaonoides of around one hundred
individuals, which would have promoted further inbreeding.
However, the dog from VM was able to reach adulthood, as
shown by its moderately worn permanent dentition, despite
severe developmental handicaps, which suggests that cooperative
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FIGURE 8 | Ostracods, mollusks and avian remains identified in the Late Villafranchian archeological sites of Barranco León (BL) and Fuente Nueva 3 (FN3) in Orce
(Guadix-Baza Depression, SE Spain). Scanning electron microscope photographs of ostracod (A–D) and mollusk (E–I) shells. (A) Candona sp. (B) Cyprideis torosa.
(C) Ilyocypris bradyi. (D) Ilyocypris gibba. (E) Melanoides tuberculate. (F) Hydrobia aff. acuta. (G) Bithynia tentaculate. (H) Pisidium casertanum. (I) Gyraulus cf.
laevis. (J) Distal humeral portion of an aquatic bird from Venta Micena (specimen VM-D13-10) in cranial view, which has been tentatively attributed to a Common
Shelduck (Tadorna tadorna), bf-brachial fossa, dc-dorsal condyle, vc-ventral condyle.

behavior from other members of the hunting pack may have
helped it to survive (Palmqvist et al., 1999; Bartolini-Lucenti et al.,
2021). Similarly, cooperation among hominins has been reported
in Dmanisi. This site documents the earliest human presence out
of Africa (∼1.8 Ma) and preserves a human skull that lost all but
one of its teeth several years before the time of death (composite
skull D 3444/D 3900), as evidenced by extensive bone loss due
to resorption of the alveolar processes. Although the etiology of
the absence of teeth differs from that described in the wild dog
of VM, the survival of this edentulous individual probably relied
also on the assistance (e.g., food chewing) from other members of
the group (Lordkipanidze et al., 2005, Lordkipanidze et al., 2006).

The high level of genetic homozygosis deduced for the
population of L. lycaonoides that inhabited Guadix-Baza —
conditions that would presumably apply also to the hominin
population— can be explained as resulting from its small size,
as this population was geographically isolated from other similar
ecosystems in the surrounding areas (Palmqvist et al., 1999).
Interestingly, the lion population that inhabits the Ngorongoro

Crater depicts a similar situation: these lions form a small,
naturally isolated population of 75–125 individuals, which has
been historically subject to severe bottlenecks followed by limited
recolonization by lions from the nearby Serengeti ecosystem.
This has resulted in high levels of inbreeding and lack of genetic
variability in the contemporary Crater lion population compared
to the much larger Serengeti population, which correlates
with increased levels of sperm abnormality and decreased
reproductive performance (Packer et al., 1991).

Any discussion on the level of genetic variability of
the population of early Homo that inhabited Guadix-Baza
makes it necessary to consider the levels of inbreeding
depression withstood by modern hunter-gatherers. Genealogical
information showed evidence of inbreeding in 165 out of 931
(∼18%) individuals of the Hadza population (Stevens et al.,
1977). Similarly, the !Kung, Khwe and African Pygmies exhibit
low genetic diversity coupled with high frequencies of divergent
mtDNA haplotypes not found in the surrounding agricultural
groups, which suggests small population sizes and long-term
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FIGURE 9 | (A) Scatter plot of prey biomass (in kg/km2) and annual rainfall (in mm). (B) Scatter plot of prey biomass and mean annual temperature (MAT, in ◦C). The
points correspond to 23 African Natural Parks and Game Reserves [data on prey biomass compiled by Hatton et al. (2015) from several sources; data on rainfall and
MAT from Fick and Hijmans (2017)] and the paleontological sites of Atapuerca and Orce discussed in the text. The estimates on rainfall and MAT are from Blain et al.
(2011a,b, 2016), García-Aguilar et al. (2014), and Rodríguez et al. (2014). Prey biomass values for the fossil assemblages were obtained using the Weibull model (see
details in Martín-González et al. (2019)). TD, Trinchera Dolina, Atapuerca (NW Spain). TE, Sima del Elefante, Atapuerca. BL-D, Barranco León (Level D), Orce
(Guadix-Baza Depression, SE Spain). FN3, Fuente Nueva 3, Orce. VM, Venta Micena, Orce. Scatter plots produced with software SPSS v. 25.

isolation, respectively (Vigilant et al., 1991; Chen et al., 2000; Oota
et al., 2005). Moreover, Trinkaus (2018) showed an unexpectedly
high frequency of abnormalities in the fossil record of Pleistocene
Homo, including from minor but rare dental, vertebral, and
carpal variants to exceptional systemic disorders. This suggests
ubiquitous stress among the Pleistocene foragers and/or high
levels of consanguinity.

Although the hominin population of Guadix-Baza was
probably small, it would not remain in strict isolation: there
are several connecting corridors in the mountainous reliefs
that surround the basin (see arrows in Figure 7). Moreover,
some species ecologically and climatically constrained like the
hippo probably dispersed by these corridors from the coastal
environments, which led to their colonization of the lacustrine
environments of this endorheic basin. In the case of the
hominins, the corridors would result in some gene flow with
other populations from adjacent areas, although the amount of
gene introgression was probably limited, as happens in modern
hunter-gatherers. Moreover, data from Binford (1980: Table 1)
for Equatorial and Subequatorial populations of non-equestrian
hunters-gatherers provide a mean number of 24.8 residential
moves per group and year, a mean distance of 15.3 km between
sites and a mean total circuit distance covered annually of
310.6 km. This suggests that each of the few hominin groups that
inhabited the Guadix-Baza Depression would travel each year
searching for food a linear distance that would cover the entire
basin. These changes in residential moves would presumably
follow a random motion, as happens in the case of modern
hunter-gatherers (Brown et al., 2007; Raichlen et al., 2014).

For this reason, the probability of intersecting one of the five
connecting corridors of the basin perimeter (Figure 7) in any
of these foraging random walks would be low, resulting in a
limited amount of gene flow with the surrounding populations
and long-term isolation.

According to these data, Guadix-Baza was home for a small
hominin population during the late Early Pleistocene, which
viability in the medium and long term could be compromised by
population bottlenecks and inbreeding depression. This explains
the sporadic and discontinuous nature of the archeological record
in the sedimentary basin. Although such situation cannot be
extrapolated to the whole European record of hominin presence
for these ancient chronologies, the scarcity of Early Pleistocene
archeological sites points to intermittent dispersal events, which
probably reflects hominin incursions that failed to establish a
more permanent character (Dennell, 2003; MacDonald et al.,
2012).

However, we must introduce here a cautionary note: Flores
Island, which has an area of 13,540 km2 (i.e., ∼4.6 times the
living area of the Guadix-Baza Depression), has a record of
hominin presence since ∼0.7 Ma (van den Bergh et al., 2009,
2016). The island allowed the survival of a local population
of H. erectus during more than half a million years and
this happened without any evidence of external gene flow
having been detected so far. In their adaptation to the insular
environment, these hominins evolved in a short time to a
dwarfed form, H. floresiensis, which represents a striking case
of evolutionary reversal in the trend of body and brain size
increase in Homo (van den Bergh et al., 2016). This was facilitated
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by the relatively small size of the population, although the
energy expenditure of the small-bodied H. floresiensis could
be half that of H. erectus (Dennell et al., 2014), which probably
resulted in a higher population density. Unlike other hominins,
H. floresiensis shows a combination of primitive traits in the
canine and premolar teeth, which are comparable to those of
Early Pleistocene H. erectus, together with a molar morphology
more progressive than in modern humans (Kaifu et al., 2015).
These features make sense in the context of a highly isolated
inbred population with small genetic variation (as expected from
the founder effect of the island colonizers), a population that
was adaptively constrained. It should be noted, however, that a
similar combination of primitive and modern characters is also
present in H. luzonensis, the dwarfed hominin of the larger island
of Luzon (Philippines), which probably descended also from an
initial population of H. erectus (Détroit et al., 2019).

Continuity or Discontinuity in the Earliest
Hominin Settlements of Europe?
During the last decades, the discovery of a significant number
of Early Pleistocene sites that preserve evidence of hominin
presence in Western Europe has renewed the debate on: (i) the
chronology of the oldest dispersal of Homo out of Africa; (ii) the
success of these ancient populations in the colonization of the
European landscapes; and (iii) their continuity or discontinuity
(Arribas and Palmqvist, 1999; Roebroeks, 2001; Dennell, 2003;
MacDonald et al., 2012; Bermúdez de Castro et al., 2013;
Rodríguez-Gómez et al., 2014a, 2016a, 2017a,b,c). Although
Dmanisi provides conclusive evidence on the presence of
hominins at the gates of Europe by∼1.8 Ma (García et al., 2010),
the overall evidence of hominin settlements in North Africa and
Europe is scarce before the Middle Pleistocene and is basically
restricted to the circum-Mediterranean realm (Rodríguez-Gómez
et al., 2016a, 2017a; Butynski, 1982; Capaldo, 1997; Roebroeks
et al., 2018). Muttoni et al. (2010, 2013) proposed that the
first occurrence of Homo sp. in Southern Europe took place
between the Jaramillo subchron and the Brunhes-Matuyama
boundary (i.e., in the 0.99–0.78 Ma interval), a time window
that encompasses the latest Early Pleistocene global climate
transition centered on MIS 22 at ∼0.9 Ma, the first prominent
cold stage of the Pleistocene. Under this view, hominin presence
in Southern Europe would have been ephemeral from ∼1 Ma
onward, with occasional short northward expansions along the
western coastal areas when temperate conditions allowed it
(Roebroeks, 2001; Muttoni et al., 2010). In contrast, Leroy
et al. (2011) argued that there were up to 42 possible narrow
windows of 41 ka for hominin dispersal in Europe through
the Early Pleistocene (2.58–0.78 Ma). In their model of climate
and vegetation change, these windows coincided with transitions
from glacial to interglacial cycles forced by obliquity, which
resulted in the opening of the landscapes with the appearance
of grasslands and forested steppes like those of Orce (Mendoza
et al., 2005; Saarinen et al., 2021). This landscape was similar
to the recent reconstruction of Dmanisi as an open wooded
savannah and grassland by Bartolini-Lucenti et al. (2022). Leroy
et al. (2011) considered that the presence of hominins was not

possible during the full glacial periods, which would be too
cold for them, and neither in the transitions from interglacial
to glacial cycles, when the landscapes were densely forested. In
any case, the oldest conclusive evidence of human presence in
Western Europe is found at BL and FN3 in Orce (∼1.4 Ma)
and TE9 level (∼1.2 Ma) in Atapuerca (see review in Palmqvist
et al., 2016). In addition, the carnivore guild of VM, a site
∼200 ka older than BL and FN3 that shows no evidence of
hominin presence, has a lower level of competition intensity
for meat than in the case of BL and FN3 (Rodríguez-Gómez
et al., 2016a, 2017a). This suggests that the delay of ∼0.4 Ma
between hominin arrival in the Caucasus and Western Europe
was not a matter of ecological opportunity and other factors
(climatic or geographic barriers to dispersal) played a role here
(Rodríguez-Gómez et al., 2017a).

The scarcity of Early Pleistocene archeological sites in Europe
indicates that the colonizing capabilities of early Homo outside
Africa may have been overestimated, as the dispersals were
not automatically followed by permanent settlements (Dennell,
2003). Further fieldwork will undoubtedly fill many gaps in the
Early Pleistocene hominin record of Europe, but current evidence
is consistent with the view that: (i) the oldest populations outside
East Africa were spatially and temporally discontinuous; (ii)
hominin expansion was strongly constrained by latitude; and
(iii) the occupation of temperate regions north of latitude 40◦
was largely confined to interglacial periods (Dennell, 2003; Leroy
et al., 2011; Rodríguez et al., 2011, 2013; MacDonald et al.,
2012; Bermúdez de Castro et al., 2013). However, continuity
of hominin settlements in the refuge areas of Southern Europe
during the cold periods of the Early Pleistocene cannot be
discarded: the presence of hominins at Atapuerca during long
time periods suggests that they were well-adapted to the hard
and seasonal conditions of the northern hemisphere at a latitude
of 42◦ and an altitude of 1000 m (Bermúdez de Castro et al.,
2013). Climate conditions in Guadix-Baza were milder than
those of Atapuerca (Figure 9), with the presence of open plains
with woodland patches and water-edge areas (Mendoza et al.,
2005; Saarinen et al., 2021). This difference between the North
and South of the Iberian Peninsula is also seen today (Blain
et al., 2009, 2011a,b). Moreover, the thermal springs of Guadix-
Baza resulted in a milder and more productive environment
in the lacustrine systems of the basin compared to present-
day conditions (García-Aguilar et al., 2014, 2015). Therefore,
the information available suggests continuity for the human
settlements in the Iberian Peninsula during a period of at
least 300 ka before the Jaramillo subchron (Agustí et al., 2009;
Bermúdez de Castro et al., 2013). According to Agustí et al.
(2009), after this phase the hominins would disappear from
Western Europe during a long period that included part of
the Jaramillo subchron and until MIS 22 (0.88–0.87 Ma). This
would be caused by an extreme decrease in mean annual
temperature and an increase in mean annual precipitation, as
deduced from the herpetofauna (Agustí et al., 2009). However,
geochronological and paleomagnetic data for levels of Trinchera
Dolina of Atapuerca indicate a continued presence of hominins
in northern Spain during the time interval of ∼1.0–0.3 Ma
(Bermúdez de Castro et al., 2013).
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The archeological record of Sima del Elefante and Gran Dolina
cave sites in Atapuerca, which preserves relatively continuous
stratigraphic sequences that stretch back from ∼1.2 Ma to
the Matuyama/Brunhes boundary, suggests that the Iberian
Peninsula was occupied by at least two different hominin
populations (Bermúdez de Castro et al., 2013). The human
remains from level TD6 of Gran Dolina, dated to 0.97–0.79 Ma
by a combination of biochronology, magnetostratigraphy and
geochronology (Duval et al., 2018; Parés et al., 2018), have been
ascribed to Homo antecessor, a species considered to represent
the most recent common ancestor of Denisovans, Neandertals
and modern humans, or at least very close to the cladogenetic
event that preceded the divergence of these species (Bermúdez
de Castro et al., 2017; Welker et al., 2020). The dental proteome
of H. antecessor indicates that it represents a close sister lineage
to subsequent Middle and Late Pleistocene hominins (Welker
et al., 2020). In Sima del Elefante, the few fossils from TE9 do
not allow to conclude if H. antecessor has deep roots in the
Early Pleistocene before the Jaramillo subchron (Bermúdez de
Castro et al., 2013, 2017). The hominin population of TE could be
different from that recorded at TD6, but the evidence recovered
is too scanty to make a strong claim. What seems clear is that the
hominins never disappeared from the Atapuerca habitats, as the
archeological record at the base of TD4 is of ∼1.0 Ma (Carbonell
and Rodríguez, 1994). This argues for the continuity of the
hominin settlements in the circum-Mediterranean realm, even if
we admit the possibility of discontinuity by the local substitution
of the original population, its assimilation or crossbreeding.

Finally, Bermúdez de Castro and Martinón-Torres (2013)
hypothesized the existence of a “source population” of hominins
in a central area of dispersal, which they tentatively located in
the Levantine Corridor. When climatic and ecological conditions
were favorable, hominins would colonize from this area the
Eastern and Western territories of Eurasia. Following Carrión
et al. (2011); Bermúdez de Castro and Martinón-Torres (2013)
considered that the key for activating evolutionary change in
this hominin population would be the geological instabilities
that resulted in an increase in physiographical heterogeneity,
biodiversity and ecological interaction. The latter conditions
were boosted in the Guadix-Baza Depression by the abundance
of thermal springs linked to intense tectonic activity, which
was a major determinant in the establishment of biodiversity
“hot spots” with high biological productivity (García-Aguilar
et al., 2014, 2015; Rodríguez-Gómez et al., 2016a, 2017a, 2022;
Palmqvist et al., 2022a).

CONCLUSION

Evidence of anthropogenic action from the archeological levels
of BL and FN-3 indicates that the hominin population
that inhabited the Guadix-Baza Depression during Early
Pleistocene times exploited the prey carcasses left abandoned
by saber-tooths, which suggests a subsistence strategy based
on passive scavenging rather than on active hunting for
obtaining meat, fat, and bone marrow. In addition, other
animals of small size available in the environment, including

rodents, leporids, tortoises and birds, were also presumably
consumed, together with eggs, invertebrates, honey, and a
wide spectrum of edible vegetation. The population size
estimated for the hominins of the basin was low, ∼350–280
individuals distributed in five to twelve groups of hunter-
gatherers. This probably compromised the long-term viability of
the population due to the effects of bottlenecks and inbreeding
depression, as detected in the coeval population of wild dogs,
which probably led them to extinction and helps to explain
the scarcity and discontinuous nature of the archeological
record in the basin.
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